
Speech-Enablement of Eclipse IDE and Eclipse Rich Client
Applications Using AspectJ

 TV Raman Alison Lee
 IBM Research IBM Research
 650 Harry Road 19 Skyline Drive
 San Jose, CA. 95120 Hawthorne, NY 10532
 1-408-927-2608 1-914-784-7712
 tvraman@almaden.ibm.com alisonl@us.ibm.com

Abstract: We present an approach to providing broad-based
accessibility to graphical applications by employing the
capabilities of the Eclipse development platform and aspect
oriented programming (AOP) in a way that leverages the strengths
of each. We describe the Eclipse platform and the advantages of
AOP and contrast AOP with object oriented programming (OOP).
Then, we discuss how to use of Eclipse frameworks and AOP in
the design of accessible Eclipse-based applications and share some
situations of when to leverage these frameworks and when we do
not from the perspective of robustness and efficiency.

1 Introduction

Current efforts to provide accessibility typically support third-party reconstruction of the
application context. They have enabled users with diverse abilities to gain access but their user
experiences remain impoverished compared to that for able-bodied users. For rich user
accessibility experiences, assistive technologies need appropriate and meaningful access to
application semantics and context. In turn, the technologies need to exploit the particular
modalities (e.g., speech) to render the application context appropriate to the user's special needs.
Take for instance a monthly calendar rendered by a visual application as a table widget. For a
blind user, rather than reading the particular date (e.g., December 17, 2004) as the value 17 at the
third row of the sixth column, the assistive technology should be aware that it is a monthly
calendar object and speak the 17th as the third Friday of December. Similarly, other users with
diverse abilities, such as a visually impaired user, require a different and optimal solution
tailored to their special needs.

In order to provide such rich user experiences adapted to users with diverse abilities, it would be
necessary to modify the application code and maintain multiple code bases. This is neither
feasible nor practical. However, we argue for an alternative approach that views accessibility
and different accessibility needs as a cross-cutting concern of usable and accessible software
systems. Accessibility enhancements would be realized as different sets of aspects and enhanced
application functionality packaged as add-ons. Users with diverse needs would run the standard
application in combination with the selected add-ons to experience the application adapted to
their needs. This aspect-based approach makes the development and deployment of accessible

software both viable and manageable. We describe the aspects-based approach, the access
framework, and several illustrations of speech enablement for the Eclipse platform. We discuss
how our approach to access-enable the Eclipse platform is general enough to speech-enable the
Eclipse IDE and other Eclipse rich-client applications.

Furthermore, when the aspect-based approach is supported by an extensible and open application
platform such as Eclipse, developers can leverage the combined capabilities to facilitate the
development and deployment of accessible software. We share some situations where
accessibility enhancements using aspects is simplified by a framework-rich platform and where
accessibility enhancements can leverage a framework-rich platform without the need for using
aspects.

In the next section, we provide an overview of prior efforts to provide accessibility in graphical
applications. Then, we provide background on aspect-oriented programming, accessibility as a
cross-cutting concern, and the Eclipse platform. Next, we describe our approach, specifically for
speech enablement. We describe how access enhancements are deployed, how different
communities of users with diverse needs use these enhancements, and how Eclipse-based
applications can benefit from these enhancements. Finally, we share experiences with how best
to leverage AOP in a framework-rich platform such as Eclipse.

2 Prior Work

There have been a number of efforts to provide accessibility to graphical applications [4, 8, 10,
11, 12]. The primitive but naïve approach is to read the content of the display. A second
approach externally taps the application context to third-party reconstruction of the application
context using APIs to objects and methods (e.g., MSAA). The annotation approach creates a
data model for the application and provides transformations to render different user interfaces.
The last approach makes use of aspect-oriented programming to create custom extensions and
modifications to software systems without directly modifying the original source code.

The first two classes of approaches run alongside but outside of the application context to re-
construct a model of the application via different means and to provide users with tools to query
their model. Neither of those approaches have direct access to the underlying runtime context
from within the application so that the richness of the user experience is limited. The third
approach rules out existing applications as a data model is not pre-existing. Emacspeak [12] is
the only example using the aspect approach to speech-enable Emacs for access by blind and
visually impaired people.

Our Eclipse work extends on the Emacspeak approach in three directions. First, we focus on how
to speech-enable a non-speech-aware GUI application and its UI components with spoken input
and spoken output. Second, we develop an access framework that allows other Eclipse-based
applications to reap the functionality of the enhancements as well as a set of core services to
access runtime application context. Third, the Eclipse platform uses an object-oriented
programming methodology supported by the Java language, makes extensive use of design
patterns, and provides a rich variety of frameworks to support application development. In
contrast, large portions of Emacs are built using Lisp, a functional language. Hence, aspect
augmentation of the Eclipse platform can leverage its rich set of frameworks.

3 Aspect-Oriented Programming, Accessibility and Eclipse

3.1 Aspect-Oriented Programming in a Nutshell

Software system design involves articulating requirements and decomposing them into a set of
concerns. Concerns fall into one of two categories: core and cross-cutting. Core concerns
capture the central functionalities of a software module while cross-cutting concerns capture
secondary, peripheral requirements that cut across multiple software modules.

Aspect-oriented programming (AOP) is a programming methodology that addresses concern
abstraction and the development of software systems that support the separation of concerns
without having to sprinkle program code related to such concerns across a large number of
modules [3, 6]. Identifying and separating concerns is particularly important for software system
implementation in order to preserve independence of the concerns and permit individual
concerns, and thus the software system, to evolve without affecting the other unrelated concerns.

While object-oriented programming (OOP) is good at modularizing core concerns, AOP is good
at modularizing cross-cutting concerns. Thus, AOP differs from OOP in the way it manages
cross-cutting concerns by encapsulating each cross-cutting concern into its own independent unit
known as an aspect. Aspect is the central unit of AOP. It encapsulates an individual concern, the
implementation code known as advice, and the weaving rules (i.e., point-cuts) that identify
points of execution (i.e., join points) where advices are integrated together to form the final
software system. AspectJ is an implementation of AOP based on the Java language.

3.2 Accessibility as Cross-Cutting Concern of Usable/Accessible Systems

We argue that accessibility is a real-world, pervasive, cross-cutting concern of usable and
accessible software systems. First, consider the question of modifying large software systems to
meet the special needs and abilities of a given user or community of users. This domain is
normally referred to as making software accessible. This can be achieved by adding appropriate
functionality (e.g., speech output, font enlargement) to an existing code-base (e.g., adding
appropriate calls to produce spoken output to support users with visual impairments). Such
functionality needs to be reproduced across multiple software systems. Augmenting a software
system with such functionality is an excellent example of a cross-cutting concern. Otherwise,
doing so without AOP is difficult if not impossible.

Second, users with diverse abilities often need multiple and varying accommodations to address
the particular nature of their impairment (e.g., low vision users are supported by a combination
of speech and magnification enhancements). They require a customized rather than one-size fits
all access solution. Developing and maintaining multiple and customized versions of software
systems is neither feasible nor practical. However, aspects and AOP provide an excellent way for
users with special needs to reap the benefits of specialized accommodations and customizations
without the problems of source code modification or multiple sources.

Presently, accessibility solutions, such as screen readers, are mostly based on third-party
software add-ons that attempt to externally augment the user interface with limited access to an
application's semantics, state, and functionality. The resulting user experience is impoverished,
awkward, and generally requires additional user action and interpretation to reconstruct the
application run-time context. In addition, applications developed for a visual presentation are

optimized to that modality. To render the same application information effectively in an aural
form would require different optimizations and approaches that take into account the modality,
the user's abilities and the context. For example, the proper way to speech-enable the date
selection displayed as 11/06/2004, is to say “November 6, 2004.” Such an accommodation would
require access to the application model which would differentiate between aural and visual
presentations. Aspects and AOP would facilitate the development of this functionality by
enabling accessibility developers to augment the application to deliver the required access to the
application model and allow the application model to provide the appropriate aural rendering.

3.3 Eclipse Platform

Eclipse [1] is an open, extensible platform (see Figure 1) that has evolved from a universal tool
platform to being a platform for any end-user applications. Its initial conception was as an open
IDE platform for integrating a diversity of development tools. More recently, the rich client
platform (RCP) was created from the generally useful portions of the Eclipse workbench (e.g.,
window-based GUI, UI frameworks, plug-ins, help system, update manager). It allows
developers to use it as an extensible desktop application [2] and as a platform for building client
applications with rich functionality.

The plug-in is the central Eclipse platform mechanism for defining new functionality and
extending an existing functionality. It is the smallest unit of function that can be developed and
delivered separately. Other than a small kernel known as the platform runtime, all of the Eclipse
Platform’s and the Eclipse Rich-client Platform's functionality is located in plug-ins. A plug-in
exposes functionality to other plug-ins through extension points and/or declares interconnections
to other extension points provided by other plug-in. Thus, extension points are well-defined
places where plug-ins can contribute and link to functionality.

The plug-in architecture with its plug-ins, extension points, and extensions work in concert with
a rich-set of APIs to provide an open system that treats extensibility as a truly first class notion.
The rich APIs provide the rich set of frameworks and building blocks for extending the Eclipse
IDE and rapid development of rich-client applications.

4 Speech-Enabling Eclipse-based UI Components

4.1 Providing Spoken Output

Spoken output is provided in response to user activities such as selection of UI components such
as a node element of a tree widget. Enabling speech in this situation involves being alerted to the
user activity. The former can be facilitated with an aspect that hooks into the event notification
framework of Eclipse. However, the Eclipse SWT widget toolkit supports an event listener
framework. We can attach listener objects on all visible UI widgets for specific user activity.

When an event is triggered, the appropriate content to be spoken needs to be obtained. A simple
approach, supported by current accessibility technologies, is to speak the visual textual content
associated with the target widget. However, this content was generated by the application for
visual presentation and is not necessarily appropriate for an aural presentation that would aid the
user’s comprehension; recall the tabular calendar example given at the outset of the paper. The
appropriate approach is to provide the content to be spoken based on the application’s model.
This requires retrieving the application’s model given its view (i.e., target widget). Many

Eclipse applications create its user interactions using the Model-View-Control design pattern
provided by JFace. For example, the Eclipse Package Navigator uses JFace to instantiate a
TreeViewer object as a control and creates an appropriate model. The control then uses SWT to
instantiate a Tree widget to provide the view. The view is populated by the control with content
provided by the model.

Help
(Optional)

Update
(Optional)

Text
(Optional)

IDE
Text

Compare Debug Search

Runtime

SWT

JFace

Resources
(optional)

UI (Generic Workbench)

Eclipse IDE

Team/
CVS

Eclipse’ Rich-client PlatformEclipse Platform

Figure 1: Eclipse platform, rich-client platform, and Eclipse IDE

Once an event triggers and its target widget is identified, we need to map from the widget to its
control. Unfortunately, the current SWT implementation does not expose such a mapping.
However, an aspect can be used to provide the needed mapping functionality. The aspect hooks
in at the join point where the JFace TreeViewer object associates itself to its tree widget view
through a method call to hookControl (see Figure 2).

Once the TreeViewer control object is identified, we gain access to the application’s model. We
use another aspect to inject Java classes that provide content to be spoken. The aural, content
providers produce the appropriate spoken content using the application’s model. We define a
class, rather than an interface, in order to provide default implementations for the aural content to
be spoken by all JFace TreeViewers instantiated at runtime. Specific applications can subclass
these classes to customize the spoken content for richer user experiences.

The base implementation of the aural content provider uses the audio formatting scheme, first
introduced in Emacspeak, to leverage the features of the auditory display to communicate
information effectively and succinctly. With this scheme, spoken text can have one or more
aural properties applied to it. We provide a simple API that the application’s model content

provider (i.e., aural content provider) can use to attach aural properties to text. When the text is
later spoken, the speech service examines any properties attached to a given utterance and
produces the specified variations by manipulating one or more voice characteristics (e.g., pitch,
speed, gender, breathiness, and roughness). Just as the visual rendering of user-selected UI
component, such as a tree node, is constructed from multiple pieces of information (e.g.,
decorators, text, icons), the aural rendering can have multiple aural properties that are
contributed by different pieces of the application model realized by the hierarchy of models
defined by the application. The cumulative effect is correctly rendered when presented to the
speech service. Allowing an application and its contributing constituents to attach aural
properties to text, we enable the application to produce a conceptual aural display list that is
consistently handled by the underlying speech interface.

import org.eclipse.jface.viewers.AbstractTreeViewer;
import org.eclipse.swt.widgets.Control;

public privileged aspect ViewerHook {
 private AbstractTreeViewer Control.tree_viewer=null;
 public AbstractTreeViewer Control.getViewer() {
 return tree_viewer;
 }

 before(AbstractTreeViewer v, Control c) :
 target(v) && args(c) &&
 call(protected void hookControl(Control)) {
 c.tree_viewer = v;
 }
}

Figure 2: Before aspect hooks into calls to the method hookControl made by AbstractTreeViewer
to associate the tree widget Control to the tree viewer. The aspect creates an instance variable
of type AbstractTreeViewer to remember the tree viewer object associated with the tree widget
Control.

4.2 Providing Spoken Input

It takes two sides to have an effective conversation; in this section, we detail how the speech-
enabling approach implemented via Aspect Oriented Programming can be used to advantage in
turning standard user interaction components into fully interactive widgets that enable the user
to provide spoken as well as keyboard/mouse input.

As was observed when generating effective spoken output, AOP enables us to add hooks at the
appropriate level to inject new behavior into an existing implementation. Such behavior is
implemented via small fragments of aspect code that have full access to the runtime context of
the application. This runtime context can be used to advantage in communicating the appropriate
pieces of context to the underlying speech recognition system. As a naive example, the fragment
of code that speech-enables a list selection can communicate the available choices to the speech
input layer, which in turn can construct a grammar that is used to recognize user input while the
user is interacting with that particular list box. Further, one can introduce appropriate aspects to
dynamically update the grammar as the list of choices get filtered during user interaction.

We illustrate this with an example. Consider a file selection dialog that allows the user to pick
from a list of files. Initially, the dialog displays the names of all files in the current directory.
When the user enters this dialog, we invoke an appropriate aspect that activates the speech-input
component and initializes it with a grammar that matches the current list of filenames. The dialog
also presents a set of controls on the screen that enable the user to filter the list by filetype. As an
example, the user might filter the list by requesting that only files of type .xml be displayed. This
results in the list of choices being pruned; we intercept the call that updates the list of choices
with an appropriate aspect that refreshes the speech-input component with the grammar that
matches the new list of choices. In a typical Java project, the above step might result in the list of
available choices reducing to a single build.xml file; the user might then open this file by a simple
“open it” utterance, where the speech-input component uses the fact that there is only one
available choice to resolve the anaphoric reference, “it.”

This design pattern can be replicated at different levels of user interaction. For example, we can
introduce appropriate pieces of aspect-oriented code that attach themselves to the point in the
environment that handles switching focus among various applications. As the user switches
focus, the aspect can query the application that has focus for a top-level command vocabulary
and activate the corresponding grammar. Spoken input can then be handled in a manner that
makes most sense within the application that has focus.

Workbench & UI

JFace

SWT

M C
V

UI Modules

Core
Services

Figure 3: Access framework, consisting of core services and UI modules, embedded within
Eclipse platform. Illustration of instantiation of Eclipse Project Navigator and its integration into
the Eclipse Platform and access framework.

We illustrate this with an example. Assume that the user is interacting with a calendar and email
application. Each of these expose a set of command words and top-level event handlers that are
executed upon receiving those command words; as an example, the calendar might include
tomorrow and next week within its command vocabulary; whereas the email reader includes

commands such as next message and replay. As the user switches focus from the calendar to the
email reader, we query the email application for its command vocabulary, and activate the
corresponding grammar via an aspect that is triggered upon entering the email application. In
fact, the action of switching focus might itself be enabled via spoken input by attaching an aspect
to the desktop manager that creates and maintains a top-level grammar which is updated each
time a new application is opened.

4.3 Access Framework and Core Services

Our access-enablement of the applications consists of an access framework and accessibility add-
ons. Both Eclipse and Activity Explorer were enabled using the same access framework and
accessibility add-ons. The access framework integrates, on-demand, the core services and UI
modules into the application without the need to modify the application source code or to
maintain multiple source versions (see Figure 3). The accessibility add-ons leverage the access
framework, core services, and UI modules to render information and provide functionality in
support of different accommodations. The core services access and expose application
information from within to enable the accessibility add-ons to leverage context information and
functionality. The UI modules provide different user interface accommodations (e.g., speech
input, magnification).

As a concrete example of functionality introduced as core service and UI module to the access
framework, we describe how we introduced auditory icons to make visual icons used to mark
notable lines in the Java Editor accessible to users with visual impairment. In the Java Editor,
the visual icons highlight lines with compiler errors, warnings, and comments marked with
TODOs. We introduce auditory icons as a UI module that is activated when the user is on an
editor line containing the visual marker. Eclipse editors such as the Java Editor support code
folding structure wherein regions of code such as import statements, comments, types, and
methods can be hidden or exposed. In order to ensure that the proper interpretation of the
editor’s model of which lines contain markers given the visual line number, it is necessary to
map visual line number to the model line number. An aspect was created as part of the core
service for Eclipse editors to expose this application data. This was necessary because the
original AbstractTextEditor API did not expose the specialized object whose method provides
this mapping (see Figure 4).

import org.eclipse.jface.text.source.ISourceViewer;
import org.eclipse.ui.texteditor.AbstractTextEditor;

public privileged aspect SourceViewerAccess {
 public ISourceViewer AbstractTextEditor.getPublicSourceViewer() {
 return getSourceViewer();
 }
}

Figure 4: Aspect to expose a private method of the AbstractTextEditor class called
getSourceViewer. The aspect uses introductions to add a new method to the AbstractTextEditor
object that permits the access framework to pass along the specialized editor object to the UI
module to invoke the mapping from visual line number to model line number.

4.4 Putting it Together

The core services of the access framework are packaged as an Eclipse plug-in (i.e., access plug-
in) that provides basic functionality for accessing the Eclipse context. We define a number of
key functionality that is available to accessibility developers through extension points. As we
expand the functionality of the core services, this plug-in will evolve with enhancements and
new extensions.

Individual accessibility enhancements (e.g., speech output, speech input, magnifier) to address
different diverse needs (e.g., blind, low-vision) are modularized into separate plug-ins. Users
with particular impairments select the appropriate add-on plug-ins tailored to their special needs.
The add-on plug-ins work with the access plug-in to access the Eclipse application context and to
deliver the user experiences tailored to the special needs.

In the deployment of an Eclipse application, the standard application, the access plug-in, and
add-on plug-ins are available for distribution. Users with diverse needs would simply download
the standard Eclipse application, the base access plug-in, and selected add-on plug-ins. When
the application launches, the additional plug-ins are loaded by the runtime environment.
Accessibility enhancements implemented as aspects are woven into the runtime environment
using a load-time weaver such as AJEER [7].

Figure 5: Visual enablement of Eclipse, in particular, magnification of font and currently selected
table item. A preference panel permits users to set accessibility options. Users may also have
magnified item spoken via keyboard or mouse interaction.

We have used this approach to speech-enable the main UI components used by the Eclipse IDE
(see Figure 5) as well as providing other non-speech enablement (e.g., magnification,

incremental find for Tree components). More recently, we have re-factored our access plug-in
and some of the add-on plug-ins by separating the general enablement from those specific to the
IDE application. We used the re-factored plug-ins for an Eclipse rich-client application known
as Activity Explorer [9] (see Figure 6). To improve beyond the current accessibility user
experiences available for both these applications, the initial set of access and add-on plug-ins can
be extended with additional plug-ins and aspects. The current set of plug-ins clearly validates
the approach, its generality for other applications, and demonstrates how incremental
enhancements can be provided to improve overall user experiences. As with current Eclipse
development, these enhancements can come from both the accessibility development and Eclipse
development communities.

4.5 To AOP or to Eclipse

Accessibility enablement of Eclipse applications can be done using AOP exclusively. However,
there are clear advantages to combine AOP and the Eclipse platform in order to leverage the
strengths of each. We highlight some examples where the partnership has led to a more efficient
and compact implementation of the accessibility enhancements.

First, we use the plug-in architecture to modularize and deliver the different accessibility
enhancements and the application access framework. This simplifies deployment and enables
different user communities to select the appropriate accessibility add-on plug-ins they desire.
Specifically, a low-vision user may combine speech and visual magnification while a hearing-
impaired user may combine visual enhancements and tactile feedback.

Figure 6: Speech and visual enablement of Activity Explorer (an Eclipse rich-client application)
using the re-factored accessibility plug-ins first developed for the Eclipse IDE.

Second, we exploit the listener framework available from the SWT widget toolkit to attach
appropriate listeners for delivering different user feedback (e.g., visual, aural). There are several
benefits. It ensures that all the visible widgets were covered by the listeners. We could also
deliver a base-level of accessibility functionality such as audio formatting and spoken output on
all selections of UI components. We use a known and supported framework that ensures
versatility and robustness of our enhancements. When certain aspects rely too much of an
implementation that is not public, we run the risk of the aspects breaking when the
implementation changes. Reliance of undocumented features should be avoided as much as
possible and certainly when there are public frameworks available. However, in some situations,
this is necessary. One situation is when the original API designers did not anticipate other
scenarios of use such as the one illustrated in the example shown in Figure 2. In that case, we
needed to map from the tree view object to its control object. A second situation is when the
original designers were over-cautious with their API design. A case in point is the example
highlighted in Figure 4 where the method getSourceViewer was made package private. Access to
this method allows mapping from visual line number to model line number.

Third, while use of an existing Eclipse framework is generally useful, there are situations where
the AOP approach is chosen instead. This is best illustrated with the example of adding a
magnifier view at the top of every instantiated Eclipse perspective; an Eclipse perspective is a
window layout identifying a collection of Eclipse views associated with a particular user task
(e.g., Java development, CVS repository browsing). An Eclipse perspective implements the
interface IPerspectiveFactory with a method createInitialLayout to define its initial layout and views.
So, one naive approach is to create a second “accessible” version for each perspective that would
add a magnifier window to each these layouts. This is easy to do but causes proliferation of
perspectives. Also, when new perspectives become available, it would be necessary to create the
second “accessible” perspective.

Alternatively, an aspect can be created in one of two ways. The first approach would use a
before advice that activates on execution of the createInitialLayout method’s code body. A before
advice is needed to ensure that the magnifier view stretches the full width of the topmost area of
the window layout; an after advice can be pre-empted by the execution of the method from
obtaining the full width of the topmost area of the window layout. An execution join point refers
to the implementation code body of the createInitialLayout method which defines its perspective’s
layout and views. Every plug-in that creates a perspective would be woven with this. The
weaver does mechanically more work. However, this approach accommodates finer grain
control and permits different advice code to be associated with each join point.

The second approach would use a before advice that activates at the call join point to the
createInitialLayout method (see Figure 7). As the Eclipse Workbench uses a Perspective Factory
design pattern to create the initial layout of the current workbench perspective, there is only one
call join-point. This is mechanically less work for the weaver; hence, efficient. However, if
different actions are to be taken for different perspectives, then filtering code must be embedded
in the advice code. Unlike the preceding approach which distributes the filtering code with the
specific join-point for creating a perspective’s layout, this centralizes all the filtering program
code.

import org.eclipse.ui.IPerspectiveFactory;
import org.eclipse.ui.IFolderLayout;
import org.eclipse.ui.IPageLayout;

public aspect PerspectiveAlter {
 before(IPerspectiveFactory perspective, IPageLayout layout):
 target(perspective) && args(layout) &&
 call(void createInitialLayout (IPageLayout))
 {
 String editorArea = layout.getEditorArea();
 IFolderLayout magnifierfolder =
 layout.createFolder("top", IPageLayout.TOP, 0.2f, editorArea);
 magnifierfolder.addView(
 "com.ibm.accessify.workbench.MagnifierViewPart");
 }
}

Figure 7: Before aspect invoked on a method call to createInitialLayout to add magnify view to
every Perspective that is opened.

5 Concluding Remarks

Providing rich user experiences to users with diverse abilities frequently requires modifying the
application code base or maintaining multiple versions. In this paper, we propose an alternative
approach that views accessibility as a cross-cutting concern of usable and accessible software
systems. We describe how the implementation of functionality to support users with diverse
needs can be facilitated using an aspect approach. Aspect-oriented programming (AOP) is based
on the idea of advising existing code using aspects to create custom extensions and modifications
to large software systems without directly modifying the original source code for the application
being extended. In addition, the extensions can be loaded on-demand leading to an architecture
that enables flexible but robust adaptive solutions.

Using the Eclipse IDE application and the Activity Explore rich-client application, we showed
how aspect-oriented programming facilitates a general, evolvable, viable, and manageable
approach for developing and delivering accessibility functionality that can lead to rich user
experiences for different user communities including those with special needs. While most of
our examples focused on speech enablement for both input and output, we have also shown that
the approach can be used to provide other modality enhancements (e.g., visual). Furthermore,
when accessibility development is performed using an extensible and open application
framework such as the Eclipse Platform, developers can leverage the combined capabilities to
facilitate the development of accessible software. We share some situations of when to leverage
these frameworks and when we do not from the perspective of robustness and efficiency.

6 References

1. eclipse.org. http://www.eclipse.org/.

2. Eclipse.org. Eclipse Rich Client Platform UI,
http://dev.eclipse.org/viewcvs/index.cgi/~checkout~/platform-ui-
home/rcp/generic_workbench_summary.html.

3. T. Elrad, M. Aksits, G. Kiczales, G. Lieberherr, and H. Ossher, “Discussing Aspects of
AOP”. Communications of ACM, 44(10), ACM:New York, pp. 33 – 38, 2001.
http://doi.acm.org/10.1145/383845.383854.

4. Freedom Scientific, Inc. Jaws. http://www.freedomsci.com/.

5. G. Kiczales, E. Hillsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold, “Getting
Started with AspectJ”. Communications of ACM, 44(10), ACM:New York, pp. 59 – 65,
2001. http://doi.acm.org/10.1145/383845.383858, http://www.eclipse.org/aspectj.

6. Laddad, R. “AspectJ in Action: Practical Aspect-Oriented Programming.”
Manning:Greenwich, 2003.

7. M. Lippert, “An AspectJ-Enabled Eclipse Core Runtime”. In Proceedings of OOPSLA 2003,
Poster, ACM:New York, 2003.

8. Microsoft. Microsoft Accessibility: Technology for Everyone.
http://www.microsoft.com/enable/.

9. M.J. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and D.R. Millen, “One-Hundred Days in
an Activity-Centric Collaboration Environment Based on Shared Objects”. In Proceedings of
the 2004 Conference on Human Factors in Computing Systems, ACM:New York, pp. 375 –
382, 2004. http://doi.acm.org/10.1145/985692.985740.

10. E.D. Mynatt and W.K. Edwards. “Mapping GUIs to Auditory Interfaces”. In Proceedings of
UIST'92, ACM:New York, pp. 61 – 70, 1992.

11. T.V. Raman. XForms: XML Powered Web Forms. Addison Wesley Professional. 2003.

12. T.V. Raman. “Emacspeak: A Speech-Enabling Interface”. Dr. Dobb's Journal. September
1997. http://emacspeak.sf.net.

